Учёные разработали транзистор, способный контролировать отдельные электроны

Учёные разработали транзистор, способный контролировать отдельные электроны

Исследователям из Германии, Японии и США транзисторы важны так же, как пища или воздух для человека. Эти крошечные полупроводниковые триоды являются главным компонентом любой электрической схемы. Со временем транзисторы становились всё меньше и меньше, пока не упёрлись в своеобразный предел, дальше которого уменьшить их было попросту невозможно. Разработка международной команды учёных позволит сделать транзисторы ещё меньше, что потенциально приведёт к значительному уменьшению размеров электронных приборов в будущем.

В текущем поколении электроники расстояние между клеммами переключателя транзисторов составляет около 30 атомов. Если уменьшить это расстояние, атомы начнут перепрыгивать с одной клеммы на другую вне зависимости от того, замкнута цепь или нет. Молекулярные транзисторы способны решить данную проблему максимально изящным и эффективным способом.

При создании молекулярного транзистора учёные столкнулись с серьёзной проблемой: как управлять этим компонентом, если состояние «включен или выключен» зависит от положения всего одного электрона. Исследователи из Института электроники твёрдого тела имени Пауля Друде (Германия), Лаборатории фундаментальных исследований (Япония) и Военно-морской исследовательской лаборатории (США) смогли преодолеть все препятствия на своём пути и разработали способ точного контроля над молекулярными транзисторами.

Транзистор собирался при помощи высокостабильного сканирующего туннельного микроскопа. Основой для триода послужил кристалл арсенида индия, на поверхности которого учёные разложили 12 атомов индия в форме шестиугольника, а в центр поместили органическую молекулу фталоцианина. Эта молекула очень слабо связана с кристаллом, поэтому если подвести к ней острие зонда микроскопа и подать напряжение, образуется туннельный переход электронов. Атомы индия являются регуляторами этого процесса и обеспечивают стабильность работы транзистора.

Во время экспериментов учёные отметили один необычный момент: в зависимости от степени своего заряда молекула фталоцианина вела и ориентировала себя совершенно по-разному. Её положение в пространстве оказывало сильное влияние на поток электронов. В данный момент исследователи нацелены на то, чтобы лучше понять этот феномен и разобраться во взаимосвязи между молекулярной ориентацией и проводимостью. Будем надеяться, что у них всё получится и уже совсем скоро персональные компьютеры можно будет уменьшить до размеров почтовой марки.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *